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5 Abstract

6 We describe a system for the automated diagnosis of diabetic retinopathy and glaucoma using fundus and optical
7 coherence tomography (OCT) images. Automatic screening will help the doctors to quickly identify the condition of
8 the patient in a more accurate way. The macular abnormalities caused due to diabetic retinopathy can be detected
9 by applying morphological operations, filters and thresholds on the fundus images of the patient. Early detection of
10 glaucoma is done by estimating the Retinal Nerve Fiber Layer (RNFL) thickness from the OCT images of the patient.
11 The RNFL thickness estimation involves the use of active contours based deformable snake algorithm for
12 segmentation of the anterior and posterior boundaries of the retinal nerve fiber layer. The algorithm was tested on
13 a set of 89 fundus images of which 85 were found to have at least mild retinopathy and OCT images of 31 patients
14 out of which 13 were found to be glaucomatous. The accuracy for optical disk detection is found to be 97.75%.
15 The proposed system therefore is accurate, reliable and robust and can be realized.

16 Keywords: Fundus image, OCT, Diabetic retinopathy, Glaucoma, RNFL, Image processing

17 Introduction
18 Diabetic retinopathy (DR) and glaucoma are two most
19 common retinal disorders that are major causes of
20 blindness. DR is a consequence of long-standing hyper-
21 glycemia, wherein retinal lesions (exudates and micro
22 aneurysm and hemorrhages) develop that could lead to
23 blindness. It is estimated that 210 million people have
24 diabetes mellitus worldwide [1-3] of which about 10-18
25 % would have had or develop DR [3-6]. Hence, in order
26 to prevent DR and eventual vision loss accurate and
27 early diagnosis of DR is important.
28 Glaucoma is often, but not always, associated with
29 increased pressure of the vitreous humor in the eye.
30 Glaucoma is becoming an increasingly important cause
31 of blindness, as the world’s population ages [7,8]. It is
32 believed that glaucoma is the second leading cause of
33 blindness globally, after cataract. Both DR and glaucoma
34 are known to be more common in those with hyperlipi-
35 demia and glaucoma.
36 Serious efforts are being made to develop an automatic
37 screening system which can promptly detect DR and

38glaucoma since early detection and diagnosis aids in
39prompt treatment and a reduction in the percentage of
40visual impairment due to these conditions [9-15]. Such
41an automated diagnostic tool(s) will be particularly use-
42ful in health camps especially in rural areas in develop-
43ing countries where a large population suffering from
44these diseases goes undiagnosed. We present such an
45automated system which accepts fundus images and
46optical coherence tomography (OCT) images as inputs
47and provides an automated facility for the diagnosis of
48these diseases and also classify their severity.
49Color fundus images are used by ophthalmologists to
50study DR. Figure F11 shows a typical retinal image labeled
51with various feature components of DR. Micro aneu-
52rysms appear as small red dots, and may lead to
53hemorrhage(s); while the hard exudates appear as bright
54yellow lesions. The spatial distribution of exudates and
55microaneurysm and hemorrhages, especially in relation
56to the fovea is generally used to determine the severity
57of DR.
58Ravishankar et al. [16] and others [17-22] showed that
59blood vessels, exudates, micro aneurysms and hemor-
60rhages can be accurately detected in the images using
61different image processing algorithms, involving mor-
62phological operations. These algorithms first detect the
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63 major blood vessels and then use the intersection of
64 these to find the approximate location of the optic disk.
65 Detection of the optic disk, fovea and the blood vessels
66 is used for extracting color information for better lesion
67 detection. But the optical disk segmentation algorithm is
68 rather complex, time consuming, and affected the over-
69 all efficiency of the system [23]. In contrast, we describe
70 a simple method that uses fundamental image proces-
71 sing techniques like smoothening and filtering. For this
72 purpose we used the previously described method of
73 dividing the fundus images into ten regions forming fun-
74 dus coordinates [24] and the presence of lesions in dif-
75 ferent coordinates was used to determine the severity of
76 the disease [24-28].
77 Optical coherence tomography (OCT) is an estab-
78 lished medical imaging technique. It is widely used, for
79 example, to obtain high-resolution images of the retina
80 and the anterior segment of the eye, which can provide a
81 straightforward method of assessing axonal integrity.
82 This method is also being used by cardiologists seeking
83 to develop methods that uses frequency domain OCT to
84 image coronary arteries in order to detect vulnerable
85 lipid-rich plaques [29,30].
86 Previously, glaucoma was thought to be due to
87 increased intraocular pressure. But, it is now known that

88glaucoma is also found in people with normal pressure.
89Glaucoma may lead to damage to optic nerve. The ret-
90inal nerve fiber layer (RNFL) when damaged leads to a
91reduction in its thickness. The diagnosis of glaucoma is
92arrived at by estimating the thickness of the RNFL. The
93top red-green region, as shown in Figure F22, is the RNFL
94region in an OCT image (Figure 2).
95The use of Optical Coherence Tomography for diag-
96nosis of glaucoma is a powerful tool. The earlier system
97with time domain OCT techniques has transformed to a
98superior system with spectral domain OCT techniques,
99and has become a well established technique for imaging
100the depth profile of various organs in medical images
101[31,32]. Liao et al. [33] have used a 2D probability dens-
102ity fields to model their OCT and a level set model to
103outline the RNFL. They introduced a Kullback-Leiber
104distance to describe the difference between two density
105functions that defined an active contours approach to
106identify the inner and outer boundaries and then a level
107set approach to identify the retinal nerve fiber layer. Al-
108though this technique is successful in determining the
109thickness, there is an additional requirement of extract-
110ing the inner and outer boundaries of the retina prior to
111identification of the nerve fiber layer. Also they have
112used separate circular scans to determine the thickness
113of the RNFL region. On the other hand, Mishra et al.
114[34] have used a two step kernel based optimization
115scheme to identify the approximate locations of the indi-
116vidual layer, which are then refined to obtain accurate
117results. However, they have tested their algorithms only
118on retinal images of rodents.
119Speckle noise is inherently present in OCT images and
120most medical images like ultrasound and MRI. Due to
121the multiplicative nature of the noise, traditional Gauss-
122ian filtering and wiener filtering does not help although
123they are very robust against additive noise. The use of
124median filter for de-noising images corrupted with
125speckle noise is a well established technique in image
126processing. However, for images corrupted with high de-
127gree of speckle, median filtering fails to completely re-
128move the noise. Chan et al. [35] have used an iterative
129gradient descent algorithm, based on progressive
130minimization of energy to de-noise the speckle cor-
131rupted image, and their technique is used in B mode
132ultrasound imaging. Wong et al. [36] suggested a
133method based on the evaluation of the general Bayesian
134least square estimate of noise free image, using a condi-
135tional posterior sampling approach which was found to
136be effective for rodent retinal images. Perona and Malik
137[37] suggested an anisotropic noise suppression tech-
138nique, in order to deal with this type of noise and also
139provide edge preservation which is of vital importance
140in medical image processing where the edges and con-
141tours of tissues and organs need to be detected. The

Figure 1 Typical fundus retinal image.

Figure 2 Retinal Nerve Fibre Layer in a typical OCT Image.
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142 smoothing is done locally rather than globally in order to
143 accurately differentiate between the homogenous regions
144 of the ganglions and the boundaries of the RNFL.
145 Mujat et al. [38] have used an active contours based
146 approach to detect the retinal boundaries. Their algo-
147 rithm uses the multi-resolution deformable snake algo-
148 rithm and is based on the work of Kass et al. [39]. The
149 snake algorithm ensures a search technique which auto-
150 matically evolves and settles on the contour to be
151 detected. In the present study reported here, we used
152 the anisotropic noise suppression method for dealing
153 with the speckle noise and the greedy snake algorithm
154 [40-43] which provides greater ease of implementation
155 in the discrete domain.

156 Materials and methods
157

158 A. DR Detection
159 DR detection methodology followed for the extraction of
160 features and classification of severity is given in FigureF3 3.

161 1) Pre-processing: this step involves the illumination
162 equalization and background normalization using
163 adaptive histogram equalization.
164 2) Optical Disk Segmentation and Removal: Optical
165 disk detection algorithm uses the property of
166 fundus image that the optical disk region is the
167 brightest region of the fundus image, and therefore
168 the intensity value is the criterion used to detect
169 optical disk. Accordingly, the input RGB image is
170 converted to HSI color plane and I-plane is taken
171 for further processing. Thus, low pass filtering is
172 done on I-plane to smoothen the edges and a
173 threshold criterion is applied on the image. The
174 value of threshold is chosen just below the
175 maximum intensity of fundus image (Imax–0.02,
176 based on our data set of 89 images). After applying
177 the threshold criterion, one may get more than one
178 region. In order to remove other artifacts, a
179 maximum area criterion is used to
180 choose the final optical disk candidate. The region

181around the final optical disk candidate is
182segmented to get the region containing optical disk.
183To detect the boundary of the optical disk, this
184region is thresholded and optical disk is detected
185with proper boundary.
1863) Blood Vessel Extraction: Blood vessel extraction is
187done using morphological closing as described
188previously [16]. A closing operation is performed
189on the green channel image using two different
190sizes of a structuring element (filter). A subtraction
191of the closed images across two different scales
192(say, S1 and S2 be the sizes of the structuring
193elements B1 and B2) will thus give the blood vessel
194segments C of the green channel image. The image
195is thresholded and artifacts are removed by
196eliminating small areas to get the final blood vessel
197structure.
1984) Exudates Detection: Morphological dilation
199operation is used to detect exudates [16]. Dilation
200in gray scale enlarges brighter regions and closes
201small dark regions. Dilation is performed on the
202green channel at 2 different scales: S3 and S4, both
203of which are greater than S2 which was used for
204vessel extraction. Hence, at both S3 and S4, the
205blood vessels do not appear in the dilated result.
206The exudates being bright with sharp edges respond
207to dilation. Subtraction of the results across the 2
208scales gives the boundaries of the exudates P. The
209image P is subjected to the threshold criterion to get
210the binary image Pt. Morphological filling is
211performed on Pt to get possible optical disk region.
212The intensity in the green channel image is taken to
213detect exudates. As the optical disk can also be
214detected as exudates, the optical disk region
215coordinates are removed to get final exudates.
2165) Fovea Detection: The fovea is a dark region located
217in the center of the region of the retina. It
218commonly appears in microaneurysm and
219hemorrhage detection results, much as the optic
220disk does in exudate detection results. The fovea is
221detected using the location of the optic disk and
222curvature of the main blood vessel. The main blood
223vessel is obtained as the thickest and largest blood
224vessel emanating from the optic disk. The entire
225course of the main blood vessel is obtained (from
226the image of the thicker vessels) by looking for its
227continuity from the optic disk. This blood vessel is
228modeled as a parabola. The vertex of the parabola
229is taken as the pixel on the main blood vessel that
230is closest to the center of the optic disk circular
231mask. The fovea is located approximately between 2
232to 3 optical disk diameter (ODD) distances from
233the vertex, along the main axis of the modeled
234parabola and is taken as the darkest pixel in this

Fundus Image  
(RGB) 

Pre-Processing 
Optical Disk 
Segmentation 

Exudates 
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Microaneurysms 
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Blood Vessel Network 
Extraction

Figure 3 Flow chart for the automated diagnosis of Diabetic
Retinopathy using fundus image.
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235 region. The region of the fovea is taken to be within
236 1 optic disk diameter of the detected fovea location.
237 6) Micro Aneurysms and Hemorrhages (MAHM)
238 Detection: Micro aneurysms are the hardest to
239 detect in retinopathy images. Hemorrhages and
240 micro aneurysms are treated as holes (i.e. small
241 dark blobs surrounded by brighter regions) and
242 morphological filling is performed on the green
243 channel to identify them. The unfilled green
244 channel image is then subtracted from the filled
245 one and thresholded in intensity to yield an image
246 (R) with micro aneurysm patches. The threshold is
247 chosen based on the mean intensity of the retinal

248image in the red channel. Blood vessels can also
249appear as noise in the microaneurysm and
250hemorrhage detection as they have color and
251contrast similar to the clots. Therefore blood vessel
252coordinates are removed to get final MAHM
253(micro aneurysms and hemorrhages) candidates.
2547) Severity Level Classification: The distribution of the
255lesions (exudates and MAHM) about the fovea can be
256used to predict the severity of diabetic macular edema.
257As suggested previously [17-23], we divided the fundus
258image into ten sub-regions about the fovea. The lesions
259occurring in the macular region are more dangerous
260and require immediate medical attention, than the ones
261farther away. As proposed previously [27, 28], DR is
262divided into 5 categories: none, mild, moderate, severe,
263and proliferative. Our system uses these criteria in
264order to classify each image in these categories. For
265performing automated diagnosis of diabetic analysis
266studies using fundus images a written informed consent
267was obtained from the patient for publication of this
268report and other accompanying images.

269B. Glaucoma Diagnosis
270The estimation of the thickness of the Retinal Nerve
271Fiber Layer (RNFL) can be broadly broken down into
272the estimation of the anterior boundary (top layer of
273RNFL), the posterior boundaries (bottom layer of
274RNFL) and finally the distance between the two
275boundaries. The algorithm employed for this purpose
276is as described previously [38-43]. Two main goals that
277must be achieved before the thickness of the retinal
278nerve fibre layer is estimated is the identification of its
279anterior and the posterior boundaries.

Figure 4 Optical Disc detection process. (a) Input fundus image,
(b) Optical Disc localization, (c) Optical Disc region, (d) Optical Disc
detected.

Figure 5 Blood vessel detection process. (a) Input fundus image,
(b) Fundus gradient image, (c) Thresholded fundus gradient image,
(d) Blood vessels detected.

Figure 6 (a) Input Fundus Image, (b) Dilation gradient image,
(c) Thresholded and filled image, (d) Exudates detected.
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280 Noise removal is imperative prior to boundary detec-
281 tion. Any imaging technique which is based on detec-
282 tion of coherent waves is affected by speckle noise.
283 Since OCT is also based on interferometric detection
284 of coherent optical beams, OCT images contain
285 speckle noise. The speckle noise is multiplicative in
286 nature which implies that it is an implicit composition
287 of the information and the noise. The major challenge
288 that needs to be tackled while reducing the effect of
289 speckle noise is minimizing the loss of relevant details
290 like the edges. Noise reduction algorithms with edge

291preservation thus become an optimal choice in such
292situations. These not only improve the visual appear-
293ance of the image, but also potentially improve the
294performance of subsequent boundary detection algo-
295rithm. In the present study, we employed the aniso-
296tropic noise suppression technique [37,38], which
297smoothes the image but at the same time preserve the
298edges. The next major step is the estimation of the an-
299terior and the posterior boundaries. This is done using
300the deformable snake algorithm [39-43]. This is an it-
301erative process which identifies the points with the
302maximum gradient, thereby detecting the boundary.

3031) Anterior Boundary Estimation
304Prior to estimation of the anterior boundary, the
305image is first smoothed using a 10 × 10 Gaussian
306kernel and standard deviation of 4. The image is
307then filtered using a 3 × 3 median filter which is
308very effective against speckle noise. The next step
309is to find an initial estimate of the anterior layer,
310which evolves as per the snake algorithm [39-43].
311The initial estimate is found by first binarizing the
312magnitude of the image gradient. The estimate is
313then found as the first white pixel from the top.
314However, sometimes there are holes in the anterior
315boundary and the first pixel identified may not be
316on the anterior layer. This means that there are still
317some white pixels that need to be removed. This is
318done by removing the white pixels which have area
319less than 158 pixels (0.07% of the total image size
320[38]. Also any connected region, which is less than
32125 pixels in length, is removed. These two
322morphological operations ensure that the white
323pixels are only those of the anterior boundary. Next
324we fill in the holes in the anterior boundary using a
325cubic polynomial curve fitting scheme. In this, using
326the set of points which lie on the anterior boundary,
327a cubic polynomial is generated. Using this
328polynomial equation the missing pixels can then be
329identified for every column.
3302) Posterior Boundary Estimation: The posterior
331boundary estimation requires a few more
332pre-processing steps. First, everything above the
333anterior boundary is removed. Next a noise
334removal technique is employed prior to extraction
335of the posterior boundary so that a relatively more
336accurate estimate can be obtained. The joint
337anisotropic noise suppression algorithm with edge
338preservation is implemented as suggested by Perona
339and Malik [37].

340The equation for anisotropic noise suppression
341involves the calculation of the divergence of the sum of
342the Laplacian and the gradient of the image. The output

Figure 7 (a) Input Fundus Image, (b) Possible Fovea region, (c)
Threshold region, (d) Fovea detected.

Input Fundus Image filling gradient (filled-unfilled)

Gradient thresholded image removing blood vessel artifacts

Figure 8 (a) Input Fundus Image, (b) filling gradient
(filled-unfilled), (c) Gradient thresholded image, (d) removing
blood vessel artifacts.

Pachiyappan et al. Lipids in Health and Disease 2012, 11:73 Page 5 of 10
http://www.lipidworld.com/content/11/1/73



343 of this image is an image which is smoothed, except at
344 the boundaries. In discrete domain, it also includes a
345 time factor which is incorporated from its analogy to the
346 heat diffusion process. The equation is implemented in
347 discrete domain as follows:

Iτþ1 ¼ Iτ þ λ cN ⋅rNI þ cS⋅rSI þ cE⋅rEI þ cW ⋅rWIð
þcNE⋅rNEIþ cNW ⋅rNW Iþ cSE⋅rSEIþ cSE⋅rSEIÞ

ð1Þ
348 The subscripts N, S, E, W, NE, NW, SE, and SW corres-
349 pond to the neighborhood pixels. Although the original
350 work of Perona and Malik [37] describes the use of only 4
351 neighbors, the use of eight neighbors in our algorithm has
352 been found to be particularly more effective. The value of
353 λ can be chosen as any value between 0 and 0.25. Here
354 the symbol r represents the Laplacian and is calculated in
355 discrete domain as follows:

rNIi;j ¼ Ii�1;j � Ii;j ð2aÞ
rSIi;j ¼ Iiþ1;j � Ii;j ð2bÞ
rEIi;j ¼ Ii;jþ1 � Ii;j ð2cÞ
rWIi;j ¼ Ii;j�1 � Ii;j ð2dÞ
rNEIi;j ¼ Ii�1;jþ1 � Ii;j ð2eÞ
rNWIi;j ¼ Ii�1;j�1 � Ii;j ð2f Þ
rSEIi;j ¼ Iiþ1;jþ1 � Ii;j ð2gÞ
rSW Ii;j ¼ Iiþ1;j�1 � Ii;j ð2hÞ

356 The value of the conduction coefficient C is updated
357 after every iteration, as a function of the image inten-
358 sity gradient.

CN ¼ g Ii�1;j

�� ��� � ð3aÞ
CS ¼ g Iiþ1;j

�� ��� � ð3bÞ
CE ¼ g Ii;jþ1

�� ��� � ð3cÞ
CW ¼ g Ii;j�1

�� ��� � ð3dÞ
CNE ¼ g Ii�1;jþ1

�� ��� � ð3eÞ
CNW ¼ g Ii�1;j�1

�� ��� � ð3f Þ
CSE ¼ g Iiþ1;jþ1

�� ��� � ð3gÞ
CSW ¼ g Iiþ1;j�1

�� ��� � ð3hÞ
359 There are two choices of the function g [37].The first
360 of the two equations described by Perona and Malik
361 [37], preserves high contrast edges over low contrast
362 edges, while the second one preserves wide regions over
363 smaller ones. Since our aim is to detect the boundary we

364choose the first function which is mentioned below
365again for convenience.

g rIð Þ ¼ e � rI Kj Þð kk Þ2ð Þð ð4Þ

366The constant K is chosen statistically to give percep-
367tually best results. Once the noise suppression algorithm
368has been implemented the extraction of the posterior
369boundary becomes fairly simple since the portions of the
370interior of the RNFL get smoothed and the posterior
371boundary becomes much more distinct. An edge field is
372calculated by first finding the magnitude of the image gra-
373dient of the smoothed field obtained as a result of the joint
374anisotropic noise suppression algorithm. Then the image
375is first normalized and then binarized using a suitable
376threshold which is set statistically. Once this has been
377done there are still some areas which contain some un-
378wanted white portions which are removed by removing
379those portions which have a pixel area of less than 100.
380Next the regions from below, the nerve fiber layer are
381eliminated which basically consist of the Retinal Pigment
382Epithelium (RPE). Also the anterior boundary is removed
383completely. However, there are still certain disconnected
384regions which were a part of RPE or the anterior boundary
385remain and need to be removed. This is done by removing
386areas having length less than 25 pixels and also areas

Figure 9 Total exudate area for above patient is 5196 pixels,
total MAHM area is 3991 pixels and there is no exudate and
MAHM pixel in fovea. Therefore the DR condition is classified as
moderate. (a) Input RGB fundus image, (b) Optical Disk Detected, (c)
Exudates Detection, (d) Blood vessel segmentation, (e) MAHM
detected.
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Figure 10 (See legend on next page.)
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387 which are less than 70 pixels [38]. The posterior boundary
388 is then estimated as the first white pixel from the top. The
389 points extracted are then passed through a median filter
390 of 50 points in order to remove any unwanted spikes. This
391 completes the detection of the posterior boundary. Now
392 both the anterior and the posterior boundaries have been
393 identified and the thickness is determined as the pixel dif-
394 ference between the boundaries. The thickness of each
395 pixel depends on the OCT acquisition mechanism. In our
396 case the pixel thickness is 6 μm. The thickness at each
397 point of the anterior and posterior boundaries is calcu-
398 lated and then averaged over the length of the image. For
399 performing automated diagnosis of Glaucoma studies
400 using OCT images a written informed consent was
401 obtained from the patient for publication of this report
402 and other accompanying images.

403 Results and discussion
404

405 A. DR Diagnosis
406 The results were obtained for eight nine (89) fundus
407 images [44] which were used for detection and diagnosis
408 of DR. The individual segmentation modules were devel-
409 oped using MATLAB, later integrated to act as standalone
410 application software. The segmentation of Micro Aneur-
411 ysms, Hard Exudates, Cotton Wool Spots, Optic Disc, and
412 Fovea was successfully performed and the results obtained
413 show high degree of accuracy, independent of different
414 coordinates of the retinal Angiogram datasets. Some of
415 the results obtained for the diagnosis of DR are shown in
416 Figures 3,F4 4,F5 5,F6 6, 7 and 8. The total area occupied and the
417 area occupied in the fovea region is calculated correspond-
418 ing to the exudates and micro aneurysms, based on the
419 number of pixels and the severity level was determined as
420 none, mild, moderate and severe. FigureF9 9 shows the
421 results of DR diagnosis of a typical patient, based on the
422 fundus image.
423 B. Glaucoma Diagnosis
424 FigureF10 10 (a-f ) shows the steps described above with re-
425 spect to Glaucoma diagnosis - starting from the initial
426 estimate of the anterior boundary to detection of both
427 the boundaries. The algorithm for the diagnosis of Glau-
428 coma by measurement of the retinal nerve fiber layer
429 thickness was tested on a set of 186 images of 31
430 patients i.e., three images each of the right and the left
431 eye. The mean thickness for both the eyes was calculated
432 and the classification into Glaucomatous and Non-
433 Glaucomatous was done based on whether the thickness

434of the nerve fiber layer is lesser or greater than 105 μm
435[45,46]. The images are of the dimension 329 × 689pix-
436els. The algorithm was implemented using Matlab 7.10
437on an Intel Core2 Duo Processor 2.2 GHz machine. The
438results are shown in Figure F1111. Figure 11 shows the in-
439put OCT image and the corresponding output image of
440a typical patient. Out of the 31 patients, 13 patients were
441found to have glaucoma in at least one eye; i.e., their
442RNFL thickness was less than 105 μm. The image shown
443above has an RNFL thickness of 168.06 μm, indicating a
444healthy candidate.

445Conclusions
446Here we have described a low cost retinal diagnosis sys-
447tem which can aid an ophthalmologist to quickly diag-
448nose various stages of diabetic retinopathies and
449glaucoma. This novel system can accept both kinds of
450retinal images (fundus and OCT) and can successfully
451detect any pathological condition associated with retina.
452Such a system can be of significant benefit for mass
453diagnosis in rural areas especially in India where patient
454to ophthalmologist ratio is as high as (4,00,000:1) [47]. A
455major advantage of our algorithm is that the accuracy
456achieved for optical disk detection is as high as 97.75%
457which implies greater accuracy of exudates detection.
458Our results show that RNFL thickness measurement

(See figure on previous page.)
Figure 10 (a) input OCT image; (b) Gaussian smoothed median filtered image; (c) initial estimate of the anterior boundary; (d)
accurately detected anterior boundary after applying snake algorithm; (e) Smoothed image with edges preserved using anisotropic
diffusion; (f) edge field of image in 10(e); (g) binarized version of image in 10(f); (h) areas less than 100 pixels are removed; (i) initial
estimate of Posterior Boundary; (j) Accurately detected posterior boundary.

Figure 11 (a): Input OCT image, (b): Anterior and posterior
boundaries in blue and red respectively.
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459 using our proposed method is concurrent with the
460 ophthalmologist’s opinion for glaucoma diagnosis. This
461 work can be extended to develop similar diagnostic tools
462 for other ocular diseases and combining it with tele-
463 medicine application, for remote, inaccessible and rural
464 areas may prove to be of significant benefit to diagnose
465 various retinal diseases.
466 Furthermore, it is also relevant to note that the risk of
467 development of both diabetic retinopathy and glaucoma
468 are enhanced in those with hyperlipidemia [48,49]. This
469 suggests that whenever diabetic retinopathy and glau-
470 coma are detected in a subject they also should be
471 screened for the existence of hyperlipidemia. Thus, early
472 detection of diabetic retinopathy and glaucoma may also
473 form a basis for screening of possible presence of dysli-
474 pidemia in these subjects. In this context, it is important
475 to note that type 2 diabetes mellitus, glaucoma and
476 hyperlipidemia are all considered as low-grade systemic
477 inflammatory conditions [50,51] providing yet another
478 reason as to why patients with DR and glaucoma need
479 to be screened for hyperlipidemia.
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