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Abstract--Two important tools used in the interpretation of ocean engineering data are the 
Minimum Least-Squared approximation technique (MLS) and the spectral analysis technique. 
Often, the inherent assumptions in these analytical techniques are overlooked by users which 
may, at times, bias the picture of the physics that remains to be understood. The present study 
focuses on a modified version of the MLS technique and the Empirical Orthogonal Function 
(EOF) analysis which have many advantages compared to the more commonly used techniques. 
It is shown that the eigen-decomposition technique of EOF analysis and a variation of the 
Minimum Least-Squared Approximation, known as the MLS2 technique, are the same, as has 
been documented in the literature. Unlike the MLS approximation, the MLS2 approximation 
or the EOF analysis does not depend on which variable is called "independent" or which 
"dependent", as both the variables are treated symmetrically. Field data collected during the 
C2S z program from Pointe-Sapin beach, New Brunswick, Canada, were used in a simple example 
to demonstrate the advantages of employing complex EOF analysis. 

I N T R O D U C T I O N  

THE INCREASING number  of satellite observations and the development  of more  and 
more  sophisticated data acquisition systems are forcing ocean scientists and engineers 
to develop and apply methods of analysis which can extract maximum information f rom 
the observed data without jeopardizing the accuracy. In recent years ocean engineers 
are extensively using the least-squares approximation and spectral analysis techniques 
as analytical tools to describe data from the oceanic environment  and discuss the 
relationships between different oceanic parameters .  

The method most  commonly  used when seeking a linear model  between two variables 
is the standard Minimum Least-Squared approximation (MLS),  also known as linear 
regression. This method has an underlying assumption that the variable chosen as 
independent  is assumed to be noiseless. This assumption is frequently over looked by 
users. While, in spectral analysis, the t ime series of  one pa ramete r  is designated as a 
base series and the coherence and phase computed between this series and those of 
other  parameters .  The underlying assumption that the base series is free of  noise 
obviously produces a bias in favour of the base series. I f  the coherence between various 
parameters  and the base series is not large the bias can result in considerable distortion 
in the pat tern  of  amplitudes of the parameters .  Moreover ,  this does not exploit the 
information contained in the cross-spectra between parameters  other  than the base 
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series. Also, when different waves (modal shapes) are present in the same frequency 
band, there is considerable difficulty in interpreting the cross-spectrum data as there is 
no way of determining how many wave structures are present and what is the relative 
contribution of each wave type to the variance spectra. Thus there is a need for an 
analysis technique that takes into account the uncertainty in both variables that are 
being compared. One such technique, which involves the eigen modal decomposition 
of the covariance matrix, is known as the Empirical Orthogonal Function analysis 
(EOF). 

Over the past few decades empirical orthogonal functions have been examined by 
many scientists from different disciplines, each viewing the concept from his or her 
own perspective, developing a tool to form a picture of some portion of physical reality. 
To the mathematician the concept provided a simple way to represent one matrix as 
another of lower rank. Empirical orthogonal function (EOF) analysis as conventionally 
applied to oceanographic data is used to decompose spatial and temporally distributed 
data into modes ranked by their temporal variances. In addition EOF analysis allows 
the partitioning of huge data sets into signal-like and noise-like parts. The following 
discussion dwells on the latter properties of the EOF analysis, providing an outline of 
the rationale for the desired partition and demonstrates with some examples as to how 
this may be accomplished. 

EOF analysis is also known as the Principal Component analysis. This technique 
originated with Pearson (1901) as a means of fitting planes by orthogonal least-squares, 
but was later proposed by Hotelling (1933, 1936) for the particular purpose of analysing 
correlation structures. Since then this technique (and its variations) has (have) been 
used with success in Archaeology, Biology, Criminology, Dentistry, Economics, For- 
estry, Geology, etc., and has now become a common procedure in Meteorological and 
Oceanographic data analysis [for example, see Weare (1979); Aubrey (1980); Weare 
and Nasstrom (1982); Barnett (1983); Hotel (1984); Marsden and Juszko (1987); and 
more recently Liang and Seymour (1991)]. There are a number of reasons for this 
popularity. Probably the most important is that this method often enables a description 
of the variations of a complex geophysical field with a relatively small number of 
functions and associated time coefficients. This property is especially important in the 
development of statistical prediction schemes, which rely upon multiple linear 
regression, where the skill and statistical confidence of prediction depend heavily upon 
a priori methods of reducing the number of available predictors (Davis, 1976; Barnett 
and Hasselmann, 1979; Marsden and Juszko, 1987). Secondly, the popularity of EOF 
analysis is due to the fact that the derived empirical functions are often amenable to 
physical interpretation which may give substantial insight into complex processes such 
as oceanographic variations (Weare et al., 1976; Aubrey, 1980) or short time climatic 
changes (Weare, 1979; Servain and Legler, 1986). 

The motivation for the present study stems from the need to find an accurate 
estimator for the spectral gain and phase between two synoptic collocated measurements 
of wave parameters (wave elevation, rl, and current velocity, u), in order to determine 
the frequency dependent reflection coefficients R(o~) of natural beaches (Tatavarti et 
al., 1988). The key to this method of determining R(o)  was to find an estimator for 
the spectral gain, which is insensitive to noise in both TI and u measurements (Tatavarti, 
1989). Hence this study. 
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The primary objective of this paper is to focus the reader's attention on EOF analysis 
and its various advantages compared to the more commonly used techniques. Although 
we do advocate the use of EOF analysis technique as opposed to the least-squared 
approximation technique, we certainly do not claim that EOF analysis is the panacea 
for all analytical problems. 

EMPIRICAL ORTHOGONAL FUNCTION ANALYSIS 

The fundamental theorem of the empirical orthogonal function analysis or the princi- 
pal component analysis may be stated as follows: 

Given a set of variables Ul, u2 .... , Up with a non-singular variance-covariance matrix 
~, it is possible to derive a set of uncorrelated variables Zl, z2,..., zp by a set of linear 
transformations corresponding to the principal axes rotation, that is, the rigid rotation 
whose transformation matrix E has as its columns the p eigen vectors of ~. The 
covariance matrix of this new set of variables is the diagonal matrix Z = E '~  E whose 
diagonal elements are the p eigenvalues of ~. Note that the prime denotes the transpose 
of the matrix. 

The method of EOF analysis involves an orthogonal transformation wherein each p 
original variable is described in terms of the p new principal components or modes. 
An important feature of the new components (modes) is that they account, in turn, 
for a maximum amount of variance of the variables. More specifically, the first principal 
component (mode) is that linear combination of the original variables which contributes 
a maximum to their total variance, the second mode uncorrelated to the first, contributes 
a maximum to the residual variance, and so on until the total variance is analysed. The 
sum of all p modes (principal components) is equal to the sum of the variances of the 
original variables. In other words, considering only the first EOF we would be looking at 
the coherent structure of  the system. Therefore, use of the complex empirical orthogonal 
function analysis appears appropriate since parts of the original coherent signals will 
tend to occur in the principal mode with the noise splitting into the higher modes. 

In what follows, we first review the standard Minimum Least-Squared (MLS) approxi- 
mation, and then a variation of it named MLS2 and the eigen-decomposition are 
treated. Finally, a comparison between MLS2 and the eigen problem is made, wherein 
the EOF decomposition corresponds exactly to a simple variation of the standard MLS 
approximation, that is, MLS2. 

THE METHOD OF MINIMUM LEAST-SQUARED APPROXIMATION (MLS) 

Let {(ui, ~i)} be a set of n paired measurements where for simplicity the means 
((u), (0)) of the original set have been removed. The criterion function for obtaining 
estimators is based on fitting the errors or residuals Ei = "qi - ¢1i, where -~i = Su~ is the 
value on the fitted line at u = ui. The residuals give the vertical distances between the 
fitted line and the actual rl~ values as illustrated in Fig. 1. In order to determine an 
optimal straight line slope (S) as model for the data set, the MLS approximation 
minimizes the function formed by the sum of squared errors (E~). In this case the error 
is defined as in Fig. 1 

E i (  S )  = "qi - S u ,  . (1) 

One method of minimizing (1) is to differentiate Equation (1) with respect to S, set 
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ei=qi-su i 
~ ~ r l i  ....... 

Fro. 1. Error definition for the standard MLS approximation. 

the derivative equal to zero, and solve the resulting equation (Weisberg, 1985). That  
is, 

dS [xli - Sui]2 = 0 (2) 
i=1 

which gives the well-known solution for S 

S - -  E U i "l~i 
Y u~ 

If we further define a correlation coefficient (p) and a variance ratio (or) as: 

covar(u, -q) and cr 2 - tr2 
P --  fr,, O'.q ~2 ~u 

where ~ and ~r~ are the variances of u and 11, respectively, and covar(u, rl) is the 
covariance between u and 0, we can express the slope S of the linear model as: 

S = pcr . (3) 

A SECOND OPTION FOR THE MLS APPROXIMATION (MLS2) 

In the MLS approximation the error is defined as the difference between the -q- 
measurements and its model values. Clearly, one could consider other functions of the 
data besides vertical errors to derive a criterion for choosing an estimator, but the 
residuals (the vertical distances between the estimated values and the actual values) 
are generally believed to be a good choice because they reflect the inherent asymmetry 
in the roles of the response and the predictor in regression problems. Now we will 
change the error  definition as the minimum distance between the data points (ui, ~qi) 
to the straight line model. This definition is sketched in Fig. 2. 

Following geometrical considerations, the expression for this new error definition 
(Ei) can be obtained as: 

E i - ~ i + s U ~  . (4) 

As before,  to determine S we resort to the method of minimizing (4). Therefore ,  

d S  i=1 1 -~- S 2 J --~ 0 .  ( 5 )  
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11 i -SUi 
ei=~/1 +'s2 S 

1 ~ i ~ "  °°°°°°°i " 
7 1  u. 

Fro. 2. Error definition for the MLS2 approximation. 

Performing the differentiation a quadratic equation on S is obtained which is satisfied 
by the solutions: 

or2 _ 1 
$1,2 = A - ÷ 1 ~ ,  where A = 

2por 

and, p and or are the same as previously defined. 
These two solutions are related as $1S2 = - 1 ,  which in a geometric interpretation 

means that the two best fitted lines obtained are perpendicular to each other. These 
two lines are sketched in Fig. 3. 

After  some algebra, it can be shown that the global minimum depends on the sign 
of p. Therefore the optimal slope of the linear model obtained by the MLS2 approxi- 
mation is 

P l ~ Z  2 (6) S=A+~ 

From Fig. 3, an association between the eigenproblem and the MLS2 appproximation 
is immediately suspected. In the following it will be proved that the correspondence is 
indeed exact. 

1 
s2=  ~ T 1  

• 

FIG. 3. The two solutions obtained by the MLS2 approximation. $1 and $2 correspond exactly to the directions 
of the eigenvectors obtained by the EOF method. 
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EMPIRICAL O R T H O G O N A L  FUNCTIONS OF OBSERVATIONS 

Suppose we monitor  p variables of interest u'  = (ul,  u2 .... u , ) ,  having a certain 
multivariate distribution with a mean vector v and covariance matrix ~.  

Expressing a linear combination of the p variables as 

z~ = e ' u  = ~ eijui (7) 

where eij are the elements of the characteristic vector associated with the characteristic 
root hj of the covariance matrix ~.  We ask which E gives the maximum variance of z. 
Defining the covariance matrix as 

= (uu'> ( 8 )  

we note f rom matrix algebra that the variance of z is given by 

(z 2) = e' 1i; e . (9) 

In order  to maximize a function of p variables when the variables are connected by an 
arbitrary number  of auxilliary equations, the method of Lagrange Multipliers is well 
adapted  (Anderson,  1984). In general terms this method states that if a function 
f ( e l j ,  e2j, . . . ,epi ) of several variables is to be maximized under  the side condition 
g (elj,  e2i , . . . ,epj)  = 0, this can be accomplished by constructing a new function 

F = f ( e l j ,  e2j,... ,ep/) - hg (elj,eEj,...  ,epj) (10) 

where h is a new unknown called the Lagrange Multiplier. Maximizing this new function 
without any restriction on the variables will produce an index whose scatter would be 
greater  than that of z 2 so we must put some sort of restriction if we are to obtain a 
sensible answer. Thus we constrain e by 

e ' e  = 1 (11) 

now maximizing (9) subject to (11), that is 

0 
Oe [e' ~ e  - h(e'e - i)] = 0 (12) 

----> 2 Y.,e - 2he = 0 (13) 

that is, 

I;e = h e  . ( 1 4 )  

Thus, the empirical orthogonal  functions correspond to the eigenvectors of I; and the 
variances of the time series of a given E O F  correspond to the eigenvalues. Note that 
for an eigenvector e 

(z 2) = e'1~e = e' (he) = Xe 'e  = X (15) 

that is, h is the variance of zj = ~ eou/. 
Summarizing,  we can say that the first principal component  of the complex of the 

sample values of the responses ul,  u2,... ,Up is the linear compound 

Zl = e t lu l  + . . . ,+  eo~U p (16) 
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whose coefficients en are the elements of the characteristic vector associated with the 
greatest characteristic root Xl of the sample covariance matrix of the responses. The 
en are unique up to multiplication by a scale factor, and if they are scaled so that 
e'e = 1, the characteristic root is interpretable as the sample variance of ~. 

But what is the utility of this artificial variate constructed from original responses? 
In the extreme case, of 1£ of rank one, the first mode would explain all the variation 
in the multivariate system. In the more usual case of the data matrix of full rank the 
importance and the usefulness of the component would be measured by the proportion 
of the total variance attributable to it. If say 87% of the variation in a system of six 
responses could be accounted for by a simple weighted average of the response values, 
it would appear that almost all the variation could be expressed along a single continuum 
rather than in six-dimensional space. Not only would this appeal to our sense of 
parsimony but also the coefficients of the six responses would indicate the relative 
importance of each original variate in the new derived compound. 

Having introduced the empirical orthogonal functions analytically as those linear 
combinations of the responses which explain progressively smaller portions of the total 
variance, let us now discuss the geometrical interpretation of components as the variates 
corresponding to the principal axes of the scatter of observations in space. If we can 
imagine that a sample of p trivariate observations has the scatter plot shown in Fig. 4, 
where the origin of the response axes has been ,n,.~,t,,,,., at. the.. sample means, then the 
swarm of points seems to have a generally ellipsoidal shape, with a major axis Zl and 
less well-defined minor axes z2 and z3. We can interpret the empirical orthogonal modes 
of the sample of p trivariate observations as the new variates specified by the axes of 
a rigid rotation of the original response coordinate system into an orientation corre- 
sponding to the directions of maximum variance in the sample scatter configuration. 
In other words, considering only the first EOF (provided that it explains the largest 
percentage of the total variance) we would be looking at the improved coherent 
structure of the system. Hence if the initial responses are a linear superposition of the 
coherent signal and an incoherent noise then consideration of the first EOF ensures a 
reduced contribution of the incoherent noise to the new variate. [For a more detailed 
account on EOF analysis the reader is suggested to refer to Preisendorfer (1988).] 

A SIMPLE E X A M P L E  

Consider two collocated time series measurements of different physical parameters 
of a wave system, namely velocity (u) and elevation (-q). Suppose the recordings are 
affected by a large scale coherent signal and an uncorrelated noise (uncorrelated with 
the signal and the other measurement). Then the measurements u(t) and "q(t) can be 
expressed as 

u(t) = us(t) + e(t) (17) 

-q(t) = "qs(t) + ~(t) (18) 

where us(t) and "qs(t) are the true signals and e(t) and ~(t) are the uncorrelated noises 
in the two measurements. Then 

(u(t) 2) = (us (t) 2) + (e(t) 2) + 2(us ('¢Qe(t)) (19) 
~ = 0  ('q(t) 2) = ('qs (t) 2) + (~(t) z} (20) 
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FIG. 4. Principal axes of  tr ivariate observat ions .  

(u(t)'q(t)} = (u,( t ) 'qs( t)) .  (21) 

Before proceeding further let us transform the units of u using linear wave theory to 
units of the wave elevation rl. Then the covariance matrix X may be expressed as 

(Us z) + (e 2) (us'qs) ] (22) 
X = ( ~ s u s )  (~q~) + (~2) • 

For convenience,  let 

(u e) = (,q z) = 0-2 ; (u,~q~) = 0-~0-~9 (23) 

(e2} = 0-2 ; (~2) = 0-2 (24) 

and 

crZ = 0-~ = 0-2 + 0-2 (25) 

where p is the correlation between the two time series measurements.  Therefore,  

X = [  o-z~ 0-u0-nP ] (26) 
0-uO" p 0 -2 

rewriting Equat ion (26) as 
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= 0.u0.'q 0.--1 

0.u 
where 0. = - -  

0.'q 
We compute the eigenvalues by using the relation ~e = he that is, 

[~  P ] [el/] = h/Iel]] (28) 
0 "-1 [e2jJ Le2jJ 

where eli and e2j are the elements of the column vector ej. The above matrix Equation 
(28) is equivalent to the homogeneous system 

0.el /+ pe2y = hjelj (29) 

pe V + 0.-1e2j = hje2j .  (30) 

But for a non-trivial solution we know that, 

0.-h p = 0 (31) 
p O'-1 -- h • 

The function [Equation (31)] is a polynomial in h of degree 2. Therefore [Equation 
(29)] has two eigenvalues. Let us now relate the directional tangent (q) of the first 
eigenvector (associated with the first eigenva!ue) with the slope (S) of the linear model 
obtained by applying the MLS2 approximation. From Equation (28) the two eigenvalues 
are obtained as: 

1 + 0.2 + ~/(1_0.2) + (20.0)2 
Xl,2 = 2 (32) 

From the set of Equations (29) and (30), the directional tangent (q) of the first 
eigenvector is obtained as: 

e21 hi - 1 
q = - (33) 

ell o'p 

and by substituting kl from (32) we obtain: 

0.2_ 1 (34) 
q = A - +  l ~ , w h e r e A -  2p0. 

and we choose the positive sign when p > 0. 
By comparing (6) and (34) we find that the slope obtained by the MLS2 approxi- 

mation is identical to the directional tangent of the first eigenvector. 
For convenience let 0. = 1; hence, the eigenvalues are given by 

k = (1 + p), (1 - p) .  (35) 

As discussed earlier the flh EOF of the p variate observations is the linear compound 
(16) 
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Z i = e l j u  I + . . . .  + e m u  p (36) 

whose coefficients are the elements of the characteristic vector of the covariance matrix 
corresponding to the jth largest characteristic root hi. If hi 4: hi, the coefficients of 

the ith and the ]th components are necessarily orthogonal; if hi = hi, the elements can 
be chosen to be orthogonal although an infinity of such orthogonal vectors exists. The 
variance of the jth component is hj and the total system variance is thus 

hi + . . . .  + hp = tr~i, (37) 

where tr denotes the trace of the matrix. The importance of the jth component in a 
more parsimonious description of the system is measured by 

Xj (38) 
trY, " 

The algebraic sign and magnitude of eq indicate the direction and importance of the 
contribution of the/ th  response to the jth component. 

Incorporating the eigenvalues (1 + p, 1 -  p) in Equations (29) and (30) we can compute 
the ratios of the elements (eli, ezj)  of the eigenvectors el and e2. Therefore 

e l =  1 

Let us now normalize eli, e2j such that e]j + e~j = 1 and compute the signal to noise 
ratio ($/N) in the new variable expressed as a linear combination of the initial responses, 

S = e~(u 2) + eZ~("q2~) + 2ele2(u,"q,) (41) 
N e~(c 2) + e22(i~ 2) 

that is, 

S _ cr~ (1 + 2e,e20) • (42) 
N cr 2 

Equation (42) shows that the signal to noise ratio of the first empirical orthogonal 
function is greater than that of the original measurements (~/CrZN) and is a function of 
the coherence between the two time series measurements. That is, the higher the 
coherence between -q and u measurements the larger the signal to noise ratio. Therefore, 
considering only the first mode for further analysis we would be reducing the contri- 
bution of uncorrelated noise in the original measurements. 

Although the first mode explains most of the total variance the absence of any phase 
information makes it difficult to physically interpret the results. Hence Wallace and 
Dickinson's (1972) c o m p l e x  EOF analysis technique is considered. 

Wallace and Dickinson (1972) demonstrated how one could use the eigenvectors of 
the cross-spectral matrix instead of the covariance matrix to represent the parameter 
space structure of a multiple time series. This procedure is similar to the application 
of EOF analysis of simultaneous multiple time series which have been band pass filtered 
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to eliminate all components outside the band of frequencies being considered. However, 
the eigenvectors of the cross-spectral matrix are not used to transform the original time 
series as in the previous case but are applied to an augmented complex time series 
involving the original time series and its time derivative. It is easy to show that the 
cross-spectral matrix at the appropriate frequency is simply the covariance matrix of 
the augmented complex time series of the original time series. Since the cross-spectral 
matrix is Hermitian, it has a complete set of orthonormal eigenvectors and real eigenval- 
ues, the eigenvectors being complex. Therefore one can obtain complex modes (that 
is, shapes with amplitude and phase information). In principle, any set of unit vectors, 
each representing a particular type of motion, which span the space may be chosen as 
the basis set for the spectrum representation. A natural set to use is the orthonormal 
set of eigenvectors ej of the spectral density matrix which are obtained from the 
eigenvalue equation ~ej = hjej. These eigenvectors form a complete orthonormal set 
and can be thought of as the kinematic normal modes for the time series measurements. 
Moreover, Preisendorfer (1988) clearly showed that in order to solve the travelling 
wave problem, one needs to resort to complex harmonic analysis first and then perform 
EOF analysis in the frequency domain. 

THE SIMPLE EXAMPLE REVISITED 

Let us now form a cross-spectral matrix instead of a covariance matrix for the 
previous example. Therefore, in this example we would be performing complex EOF 
analysis rather than simple EOF outlined in the previous section. Normally we denote 
the power and cross-spectra by Fii and Fip, respectively. Therefore the cross-spectral 
matrix can be written as 

Fii .... Fip 
rpi ... rpp 1 (43) 

Let us consider real data from collocated measurements of cross-shore velocity, 
alongshore velocity and pressure (elevation) to form the cross-spectral matrix for a 
specific frequency band. The alongshore velocity measurement is also considered in 
order to increase the statistical confidence, since the greater the number of parameters 
available to form the cross-spectral matrix the greater the statistical confidence, because 
the EOF analysis fully exploits the interrelationships between all the parameters used 
in the expansion. To maintain consistency the units of velocity have been transformed 
to those of elevation using linear wave theory before forming the cross-spectral matrix. 

F. .  F.v F. n 

(44) 
Fnu F,I~ F,r~ 

The data for analysis were collected during Autumn 1983, from Pointe-Sapin beach, 
New Brunswick, Canada, as part of the Canadian Coastal Sediment Study (C2S 2) 
program. Details of the field experiment and a summary of the data collected are 
reported by Daniel (•985). Measurements of the flow field were made using Model 512 
OEM Marsh McBirney electromagnetic current meters and Model 245A-002 Digiquartz 
pressure transducers. The data set used in this study is from an instrument station 
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located about 60 m offshore from the mean shoreline. The following cross-spectral 
matrix (u x v x -q) is formed from data obtained from Pointe-Sapin beach, New 
Brunswick, for waves in the frequency band 0.1318-0.1363 Hz. 

0.002049 - 0.000118- 0.000084i - 0.002214- 0.000060i 

-0.000118+0.000084i 0.000048 0.000145-0.000102i 

-0.002214+0.000060i 0.000145+0.000102i 0.002476 (45) 

Eigenvalues and complex eigenvectors are computed using the IMSL subroutine 
EIGCH. The normalized eigenvalues are computed to be 

h = 0.9838, 0.0106, 0.0054. 

That is, the principal mode explains 98.4% of the variance. The first EOF can 
therefore be considered to be that linear combination of the initial responses (u, v, -q) 
which account not only for the maximum variance but also a reduced contribution from 
the uncorrelated noise. Therefore the components ut (0.671,0), vt (0.051,144.46) and 
-q~ (0.739,178.45) may be used for further analysis. The numbers in brackets are, 
respectively, the amplitudes (in metres) and phases (in degrees). 

Figure 5 shows the normalized eigenvalues as a function of the wave frequency. It 
is clear that the first eigenvalue explains most of the total variance in all frequency 
bands and hence the appropriate eigenmode for further analysis would be the first 
mode associated with this eigenvalue. In order to check whether the eigen-modal 
decomposition really partitions the total variance into different orthonormal modes 
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FIG. 5. Normalized eigenvalues as a function of the wave frequency. The eigenvalues indicate the percentage 
of variance explained by mode 1 (+) ,  mode 2 (A) ,  mode 3 (O). 



The eigenvalue problem 523 

let us compute the energy flux magnitudes and directions as functions of the wave 
frequency. 

The expression for co-spectrum can be written in terms of the coherent amplitudes 
and the phase difference between two series as follows 

Cnu(to) = an(to) au(to) cos 0n,(to ) (46) 

C, lv (to) --- a,l(to ) av(to) cos 0,1~ (to) (47) 

where C,~u(tO) and C,7~(to ) are the co-spectra between -q and u series, and -q and v 
series, respectively, an, a~ and av are the coherent spectral amplitudes obtained from 
EOF analysis for each eigenmode, 0,~, and 0, w are the corresponding spectral phase 
differences between -q, u and v series obtained from the each eigenmode, and to is the 
wave frequency. 

We can express the energy flux F = IF le i~ (normalized (dimensionless) magnitude 
and direction) at each frequency as 

C~u + C~v (48) IFI2 - a~(au2 2 + a 2) 

ot = tan- 1 (C'a~-~v) . (49) 

Figures 6 and 7, respectively, show the direction of the energy flux associated with 
each mode and the magnitude of the energy flux associated with each mode as a 
function of the wave frequency for data from Pointe-Sapin beach. It can be seen that 
the total energy is distributed in three directions, corresponding to the three modes, 
each orthogonal to the other and that the magnitude of the energy associated with the 
principal mode is significantly greater at all frequencies when compared to the other 
modes. 

As observed in Equations (39) and (40) it is easy to show that the gain (ratio of the 
square root of the variances in "q and u) of the first eigenmode is equal to the inverse 
of the negative of the gain of the second eigenmode and that there is a 18& phase shift 
between the first two eigenmodes. This seems to be an interesting property of the 
empirical orthogonal function analysis which partitions energy into different orthonor- 
mal modes. It is important to recognize that these empirical modes are not a property 
of any geometry (as in the case of normal modes of a basin), nor do they depend on 
any dynamical assumptions, but rather they are a property of the time series itself. 

CONCLUSIONS 

Unlike the standard MLS approximation, the MLS2 approximation or the EOF 
analysis does not depend on which variable is called "independent" or which "depen- 
dent", as both the variables are treated symmetrically. Thus, given the frequency of 
practical situations in which "independent" variables are recorded with error, methods 
of MLS2 approximation and EOF are more appropriate for data analysis. 

The result stating S -= q (where S is the optimal straight line slope and q is the 
directional tangent of the first eigenvector), is expected if we consider that the total 
variance in data set is invariant under an orthogonal transformation. If we split the 
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Fro. 6. Direct ion of  energy fluxes (in degrees)  as a function of  the wave  frequency for mode  1 ( + ) ,  mode  
2 ( A ) ,  m o d e  3 ( O ) .  

total variance (0-2) into orthogonal components (0-2,, 0-20 the sum of them will be 
constant independently of the arbitrary orthogonal reference system selected (u', -q'): 

= 0.2, + 0.2, ___ trace 1~ . (50) 

Referring to the orthogonal splitting of the total variance, the eigenproblem corre- 
sponds to finding rotated axes (u', "q') such that 0"2,, (0.2') is maximum. In a similar way 
the MLS2 approximation, with the error defined in Equation (5), corresponds to finding 
rotated axes (u', ~1') such that Oau , (0.2') is minimum. In other words, this exact equival- 
ence comes from the fact that as total variance is invariant, to maximize one part of it 
leads to the same result as to minimize the other part. 

To summarize the results, we can compare the slope values obtained by using the 
two different methods: EOF and MLS2. For a certain data set {(ui,'qi)} we can always 
transform the units such that 0.2 = 1. Therefore under this scaling, expressions (3) and 
(34) imply that for a linear model "q = Su, the value of S is: 

S = { p l  by using EOF 
by using MLS if 0.2 ~ 1 . 

Therefore by assuming one of the variables being noiseless (e.g. u), the slope of a 
linear relation between u and ",1 will be always underestimated. 
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The complex  empirical modes  determined from the eigenvectors of the cross-spectral 
matrix have the following characteristics: 

(i) the empirical modes,  which are the propert ies of  the measured time series (not 
of any geometrical  or  dynamical assumptions) allow independent  orthogonal  motions 
at the same frequency to be separated; 

(ii) the relative magnitudes of the first few eigenvalues in the expansion gives an 
indication of whether  one or more wave types are present.  If  the first eigenvalue 
explains a significant amount  of variance then the remaining eigenvalues may be 
regarded as due to uncorrelated noise; 

(iii) if more  than one type of wave structure is present  in the same frequency 
band,  the physical interpretat ion becomes somewhat  speculative because the first mode  
represents  a compromise  structure which incorporates the correlated (non-orthogonal)  
features of  the waves which are present,  while the next mode  will be orthogonal  to the 
first mode ,  which explains the maximum amount  of the residual variance and so on. 
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